

Simulations of a Gold Rod into Borosilicate Glass using Experimentally Determined Constitutive Constants

Charles E. Anderson, Jr.¹

Katie A. McLoud²

¹CEA Consulting ²Southwest Research Institute San Antonio, TX San Antonio, TX

Background—1

- About 2004, began an investigation of penetration and failure of long rods into glass
- Experiments conducted at Ernst-Mach-Institut under subcontract to Southwest Research Institute (work funded by US Army TARDEC)
- Experiments were done in the reverse ballistics mode, with a 1-mm diameter gold rod suspended and then impacted by a 20-mm diameter borosilicate (Borofloat®33) glass cylinder
- Ultra-high-speed photography and flash X-rays were used to record the position of the failure front and penetration front, respectively, as a function of time

Au Rod Penetration of Borofloat Glass

Exp. 10557, $v_p = 786 \text{ m/s}$

Exp. 10585, $v_p = 2328 \text{ m/s}$

Ernst-Mach-Institut

Note that failure front is outrunning the penetration front

Test 10579; $v_p = 1252 \text{ m/s}$

Slope is the penetration velocity

Summary of Experimental Results

- Plot the penetration and consumption velocities as a function of the impact velocities
- Use linear regression to determine u vs. v_p and v_c vs. v_p

- $u = 0.7539 v_p 0.2155$
- $V_c = 0.2493 V_p + 0.2077$
- Theory: $u + v_c = 1.0 v_p$
- $u + v_c = 1.0032 v_p 0.0078$

Background—2

- In 2006, we began to conduct characterization experiments on borosilicate and soda-lime glasses to support, ultimately, development of a computational constitutive model for glass
 - Intact and damaged glass
 - Strength as a function of confinement pressure

Damaged Glass

Objective of this Work

- Can simulations reproduce the experimental results using the results of the characterization experiments?
- But first, get some understanding of the uncertainty in the experimental data

Regression Analysis

Fit No.	Regression Fit	Fit Std. Error (km/s)	Slope Std. Error	Identifying Remarks
1	$u = 0.7539v_p - 0.2155$	0.0311	0.0110	Original data set; this fit used (0,0) as a data point in <i>P-t</i> fits of experimental data
2	$u = 0.7344 v_p - 0.1925$	0.0285	0.0105	Original data set but did not include Al-backed data
3	$u = 0.7559v_p - 0.2192$	0.0288	0.0153	Original data set but dropped the 2 lowest velocity data points
4	$u = 0.7424v_p - 0.1989$	0.0244	0.0139	Original data set but dropped the 2 lowest velocity data points and the Al-backed data points
5	$u = 0.7361 v_p - 0.1796$	0.0304	0.0161	Data set w/o (0,0) point in <i>P-t</i> fit; 2 lowest velocity data points not included
6	$u = 0.7200 v_p - 0.1530$	0.0226	0.0129	Data set w/o (0,0) point in <i>P-t</i> fit; 2 lowest velocity data points and Albacked data not included

Get slightly different fits depending on which data to include in the analysis

The slopes of u vs. v_p change less than 5%

Results of Analysis of Experimental Data

 Different coefficients from the regression analysis depending upon the assumptions

Re-analysis of Experimental Data

- Originally, regression analysis of P-t data included the (0,0) point (since know the time of impact)
- However, can have some dwell at early times, particularly at the lower impact velocities
- Additionally, effects of the impact shock persists for a few microseconds
- Redid regression analysis without the (0,0) point

Believe Fit No. 6 most appropriate

Equation of State Borosilicate Glass

Glass is highly compressible

Hugoniot Response

$$k = 0.001$$

Equation of State

$$P = K_1 \mu + K_2 \mu^2 + K_3 \mu^3 \qquad \mu = \frac{\rho}{\rho_o} - 1$$

$$u_s = c_o + k_1 u_p + \frac{k_2}{c_o} u_p^2$$

Hugoniot Response

$$u_s = c_o + k_1 u_p + \frac{k_2}{c_o} u_p^2$$

2.447 km/s

Equation of State & Hugoniot

Simulations

- Wavecode CTH, cylindrically symmetric option
- Geometry
 - 1-mm diameter rod, 70-mm long
 - 20-mm diameter glass, 60-mm long
- Square zoning throughout the computational grid
 - 0.07 mm on a side
 - Slightly more than 14 zones across the diameter of the rod
- Fully resolved numerical simulations

Strength Model

- Assumption: penetrating damaged glass
- Constitutive model: Drucker-Prager

$$\sigma_{eq} = egin{cases} Y_o + eta P & P \leq P_{cap} \ Y_{cap} & P \geq P_{cap} \end{cases}$$

$$Y_o = 0.038 \, \text{GPa}$$

 $\beta = 1.2$
 $Y_{cap} = 2.1 \, \text{GPa}$
 $P_{cap} = 1.72 \, \text{GPa}$

Analysis of Simulation Results

18

- Analyzed the results of the numerical simulations like the experiments:
 - Determined the depth of penetration at the respective X-ray times
 - Conducted a linear regression fit on those simulated data points
 - Compared results to experimental data

Penetration-Time Results

50.0

$$v_p = 0.768 \text{ km/s}$$

$$v_p = 1.002 \text{ km/s}$$

60.0

Analysis of All Experiments

	Regression Fit	Fit Std. Error (km/s)	Slope Std. Error
Experiments	$u = 0.7200 v_p - 0.1530$	0.0226	0.0129
Simulations	$u = 0.7289 v_p - 0.1962$	0.0109	0.0062

Parametric Study

■ There is some uncertainty in determination of the Drucker-Prager constitutive constants: $\pm 10\%$ on β and Y_{cap}

- $Y_{cap} = 2.1 \text{ GPa} \rightarrow 1.89 \text{ GPa}$: tends to increase penetration at high v_p
- $\beta = 1.2 \rightarrow 1.1$: tends to increase penetration at low V_p

Impact Velocity (km/s)

Results of Parametric Study

Fit No.	Constitutive Constants	Regression Fit	Fit Std. Error (km/s)	Slope Std. Error
7	$\beta = 1.2, Y_{cap} = 2.1 \text{ GPa}$	$u = 0.7289 v_p - 0.1962$	0.0109	0.0062
8	$\beta = 1.2, Y_{cap} = 1.89 \text{ GPa}$	$u = 0.7427v_p - 0.2102$	0.0130	0.0074
9	$\beta = 1.1, Y_{cap} = 2.10 \text{ GPa}$	$u = 0.7214v_p - 0.1745$	0.0107	0.0061

- Decreased cap, slope increased 1.9%
- Decreased β, slope decreased by 1.0%
- If had decreased cap and β , slope would have tended to remain the same, but have slightly deeper penetration over the entire velocity range

Comparison of Experiments and Simulations

 Compare slopes (penetration velocity as function of impact velocity)

Standard error in expt. slope

 95% confidence bound for the experimental slope

 The baseline simulation results fall within the uncertainty of the experimental results

Might be tempted to state that Fit No. 9 is better than Fit 7

Beware of numerology!

Summary & Conclusions

24

- Demonstrated that can reproduce reverse ballistics experiments of a gold rod into a borosilicate glass:
 - Using a Drucker-Prager constitutive model
 - Model constants determined from independent laboratory characterization experiments
 - Slight changes in the constitutive constants (representing the uncertainties from characterization) also reproduce the experimental data within experimental scatter
- Assumption of penetrating failed glass was validated
 - Provided not near the dwell-transition velocity where details of going from intact to damaged glass are important
- Glass is highly compressible, and important to have appropriate equation of state